Transition state cumulenic rings display increased aromaticity expressed by a very strong constant magnetic response and augmented out diatropicity with regard to in

From Men's
Revision as of 03:32, 28 March 2024 by Polishturtle36 (talk | contribs) (Created page with "The variations of the induced magnetic field are explained on the basis of frontier orbital interactions through rotational excitations, which enable further rationalization o...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

The variations of the induced magnetic field are explained on the basis of frontier orbital interactions through rotational excitations, which enable further rationalization of the aromatic/antiaromatic behavior.Quantification of Aromaticity Based on Interaction Coordinates: A New Proposal.Attempts to establish degrees of aromaticity in molecules are legion. In the present study, we begin with a fictitious fragment arising from only those atoms contributing to the aromatic ring and having a force field projected from the original system. For example, in benzene, we adopt a fictitious C6 fragment with a force field projected from the full benzene force field. When one bond or angle is stretched and kept fixed, followed by a partial optimization for all other internal coordinates, structures change from their respective equilibria.

These changes are the responses of all other internal coordinates for constraining the bond or angle by unit displacements and relaxing the forces on all other internal coordinates. The "interaction coordinate" derived from the redundant internal coordinate compliance constants measures how a bond (its electron density) responds for constrained optimization when another bond or angle is stretched by a specified unit (its electron density is perturbed by a finite amount). The sum of interaction coordinates (responses) of all bonded neighbors for all internal coordinates of the fictitious fragment is a measure of the strength of the σ and π electron interactions leading to aromatic stability. This sum, based on interaction coordinates, appears to be successful as an aromaticity index for a range of chemical systems. Since the concept involves analyzing a fragment rather than the whole molecule, this idea is more general and is likely to lead to new insights.Forward modeling of metal complexation by NOM: II. prediction of binding site An a priori model of metal complexation by natural organic matter (NOM) has previously been shown to predict experimental data at pH 7 and 0 M ionic strength (Cabaniss, S.

E. Environ. Sci. Technol. 2009). Unlike macroscopic models based only on stoichiometry and thermodynamics, this a priori model also predicts the ligand groups and properties of complexed (occupied) molecules. Ligand molecules with strong binding sites form complexes at low metal concentrations and have average properties (molecular weight, charge, aromaticity) which can differ significantly from the average properties of bulk NOM.

Cu(II), Ni(II) and Pb(II) preferentially bind to strong amine-containing sites which are often located on small (MW < 1000), lower-aromaticity molecules. Cd(II) and Zn(II) show generally weaker binding, although they also prefer amine-containing sites to pure carboxylates and bind to smaller, less aromatic molecules. Ca(II) shows no real preference for amine over carboxylate ligand groups, preferentially binding to larger and more negatively charged molecules. Al(III) has a unique preference for phenol-containing sites and larger, more aromatic molecules. While some predictions of this model are consistent with a variety of experimental data from the literature, others await validation by Aromaticity and antiaromaticity of substituted fulvene derivatives: perspectives from the information-theoretic approach in density functional reactivity theory.Even though the concept of aromaticity and antiaromaticity is extremely important and widely used, there still exist lots of controversies in the literature, which are believed to be originated from the fact that there are so many aromatic types discovered and at the same time there are many aromaticity indexes proposed. In this work, using seven series of substituted fulvene derivatives as an example and with the information-theoretic approach in density functional reactivity theory, we examine these concepts from a different perspective.

We investigate the changing patterns of Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, information gain, Onicescu information energy, and relative Renyi entropy on the ring carbon atoms of these systems. Meanwhile, we also consider variation trends of four representative kinds of aromaticity indexes such as FLU, HOMA, ASE and NICS. snac permeation enhancer among these quantities show that with the same ring structure of the derivatives, both information-theoretic quantities and aromaticity indexes obey the same changing pattern, which are valid across all seven systems studied. However, cross correlations between these two sets of quantities yield two completely opposite patterns. Seebio cyanocobalamin salcaprozate sodium ring-structure dependent correlations are in good agreement with Hückel's 4n + 2 rule of aromaticity and 4n rule of antiaromaticity. Our results should provide a novel and complementary viewpoint on how aromaticity and antiaromaticity should be appreciated and categorized. More studies are in progress to further our understanding about the matter.

Observation of d-p hybridized aromaticity in lanthanum-doped boron clusters.